# Grade 6 | South Carolina College and Career Ready Standards for Mathematics Correlation to Eureka Math ${ }^{\text {2TM }}$ 

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 T M}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

## Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

## Accessibility

Eureka Math ${ }^{2}$ incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math ${ }^{2}$ teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

## Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

| MP. $\mathbf{1}$ <br> Make sense of problems and persevere in solving them. | Lessons in every module engage students in mathematical practices. <br> These are indicated in margin notes included with every lesson. |
| :--- | :--- |
| MP. $\mathbf{2}$ <br> Reason abstractly and quantitatively. | Lessons in every module engage students in mathematical practices. <br> These are indicated in margin notes included with every lesson. |
| MP. $\mathbf{3}$ <br> Construct viable arguments and critique the reasoning of others. | Lessons in every module engage students in mathematical practices. <br> These are indicated in margin notes included with every lesson. |
| MP. $\mathbf{4}$ <br> Model with mathematics. | Lessons in every module engage students in mathematical practices. <br> These are indicated in margin notes included with every lesson. |
| MP. $\mathbf{5}$ | Lessons in every module engage students in mathematical practices. <br> These are indicated in margin notes included with every lesson. |
| Use appropriate tools strategically. | Lessons in every module engage students in mathematical practices. <br> These are indicated in margin notes included with every lesson. |
| Attend to precision. | Lessons in every module engage students in mathematical practices. <br> These are indicated in margin notes included with every lesson. |
| MP. $\mathbf{7}$ | Lessons in every module engage students in mathematical practices. <br> These are indicated in margin notes included with every lesson. |
| MP. $\mathbf{8}$ |  |
| Look for and make use of structure. |  |

## The Number System

## 6.NS The Number System

## South Carolina College and Career Ready Standards for Mathematics

## Aligned Components of Eureka Math ${ }^{2}$

## 6.NS. 1

Compute and represent quotients of positive fractions using a variety of procedures (e.g., visual models, equations, and real-world situations).

## 6.NS. 2

Fluently divide multi-digit whole numbers using a standard algorithmic approach.

## 6.NS. 3

Fluently add, subtract, multiply and divide multi-digit decimal numbers using a standard algorithmic approach.

## 6.NS. 4

Find common factors and multiples using two whole numbers.

6 M2 Topic B: Dividing Fractions
6 M2 Topic C: Dividing Fractions Fluently

6 M2 Topic E: Division of Multi-Digit Numbers

6 M2 Topic D: Decimal Addition, Subtraction, and Multiplication
6 M2 Topic F: Decimal Division

This standard is fully addressed by the lessons aligned to its subsections.

6 M2 Topic A: Factors, Multiples, and Divisibility
6 M4 Lesson 13: The Distributive Property
6 M4 Lesson 14: Using the Distributive Property to Factor Expressions

6 M2 Topic A: Factors, Multiples, and Divisibility
6 M4 Lesson 13: The Distributive Property
6 M4 Lesson 14: Using the Distributive Property to Factor Expressions

## South Carolina College and Career

 Ready Standards for Mathematics
## Aligned Components of Eureka Math ${ }^{2}$

## 6.NS.4.C

Express sums of two whole numbers, each less than or equal to 100 , using the distributive property to factor out a common factor of the original addends.

## 6.NS. 5

Understand that the positive and negative representations of a number are opposites in direction and value. Use integers to represent quantities in real-world situations and explain the meaning of zero in each situation.

## 6.NS. 6

Extend the understanding of the number line to include all rational numbers and apply this concept to the coordinate plane.


## 6.NS.6.a

Understand the concept of opposite numbers, including zero, and their relative locations on the number line.

## 6.NS.6.b

Understand that the signs of the coordinates in ordered pairs indicate their location on an axis or in a quadrant on the coordinate plane.

6 M2 Topic A: Factors, Multiples, and Divisibility
6 M4 Lesson 13: The Distributive Property
6 M4 Lesson 14: Using the Distributive Property to Factor Expressions

6 M3 Lesson 1: Positive and Negative Numbers
6 M3 Lesson 4: Rational Numbers in Real-World Situations

This standard is fully addressed by the lessons aligned to its subsections.

## 6 M3 Lesson 2: Integers

6 M3 Lesson 3: Rational Numbers
6 M3 Lesson 4: Rational Numbers in Real-World Situations

6 M3 Lesson 10: The Four Quadrants of the Coordinate Plane
6 M3 Lesson 11: Plotting Points in the Coordinate Plane
6 M3 Lesson 12: Reflections in the Coordinate Plane
6 M3 Lesson 13: Constructing the Coordinate Plane

South Carolina College and Career
Ready Standards for Mathematics Ready Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

| 6.NS.6.C | 6 M3 Lesson 10: The Four Quadrants of the Coordinate Plane |
| :---: | :---: |
| Recognize when ordered pairs are reflections of each other on the coordinate plane across one axis, both axes, or the origin. | 6 M3 Lesson 11: Plotting Points in the Coordinate Plane <br> 6 M3 Lesson 12: Reflections in the Coordinate Plane <br> 6 M3 Lesson 13: Constructing the Coordinate Plane |
| 6.NS.6.d <br> Plot rational numbers on number lines and ordered pairs on coordinate planes. | 6 M3 Lesson 3: Rational Numbers <br> 6 M3 Lesson 11: Plotting Points in the Coordinate Plane <br> 6 M3 Lesson 12: Reflections in the Coordinate Plane <br> 6 M3 Lesson 13: Constructing the Coordinate Plane <br> 6 M3 Topic D: Solving Problems in the Coordinate Plane |
| 6.NS. 7 <br> Understand and apply the concepts of comparing, ordering, and finding absolute value to rational numbers. | This standard is fully addressed by the lessons aligned to its subsections. |
| 6.NS.7.a <br> Interpret statements using equal to (=) and not equal to $(\neq)$. | 6 M4 Lesson 17: Equations and Solutions |
| 6.NS.7.b <br> Interpret statements using less than (<), greater than (>), and equal to (=) as relative locations on the number line. | 6 M3 Lesson 5: Comparing Rational Numbers 6 M3 Lesson 6: Ordering Rational Numbers |

## South Carolina College and Career

 Ready Standards for MathematicsAligned Components of Eureka Math ${ }^{2}$

## 6.NS.7.c

Use concepts of equality and inequality to write and to explain real-world and mathematical situations.

## 6.NS.7.d

Understand that absolute value represents a number's distance from zero on the number line and use the absolute value of a rational number to represent real-world situations.

## 6.NS.7.e

Recognize the difference between comparing absolute values and ordering rational numbers. For negative rational numbers, understand that as the absolute value increases, the value of the negative number decreases.

## 6.NS. 8

Extend knowledge of the coordinate plane to solve real-world and mathematical problems involving rational numbers.

## 6.NS.8.a

Plot points in all four quadrants to represent the problem.

6 M3 Lesson 8: Absolute Value and Order
6 M3 Lesson 5: Comparing Rational Numbers
6 M3 Lesson 6: Ordering Rational Numbers

6 M3 Lesson 7: Absolute Value

6 M3 Lesson 9: Interpreting Order and Distance in Real-World Situations

This standard is fully addressed by the lessons aligned to its subsections.

## 6 M3 Lesson 14: Modeling with the Coordinate Plane

6 M3 Topic D: Solving Problems in the Coordinate Plane
6 M5 Lesson 5: Perimeter and Area in the Coordinate Plane

| South Carolina College and Career Ready Standards for Mathematics | Aligned Components of Eureka Math² |
| :---: | :---: |
| 6.NS.8.b <br> Find the distance between two points when ordered pairs have the same $x$-coordinates or same $y$-coordinates. | 6 M3 Lesson 14: Modeling with the Coordinate Plane <br> 6 M3 Topic D: Solving Problems in the Coordinate Plane <br> 6 M5 Lesson 5: Perimeter and Area in the Coordinate Plane |
| 6.NS.8.c <br> Relate finding the distance between two points in a coordinate plane to absolute value using a number line. | 6 M3 Lesson 14: Modeling with the Coordinate Plane 6 M3 Topic D: Solving Problems in the Coordinate Plane <br> 6 M5 Lesson 5: Perimeter and Area in the Coordinate Plane |
| 6.NS. 9 <br> Investigate and translate among multiple representations of rational numbers (fractions, decimal numbers, percentages). Fractions should be limited to those with denominators of $2,3,4,5,8$, 10 , and 100 . | 6 M1 Lesson 22: Introduction to Percents |

## Ratios and Proportional Relationships

## 6.RP Ratios and Proportional Relationships

## South Carolina College and Career <br> Ready Standards for Mathematics

## Aligned Components of Eureka Math ${ }^{2}$

## 6.RP. 1

Interpret the concept of a ratio as the relationship between two quantities, including part to part and part to whole.

[^0]| South Carolina College and Career Ready Standards for Mathematics | Aligned Components of Eureka Math² |
| :---: | :---: |
| 6.RP. 1 continued | 6 M1 Lesson 10: Multiplicative Reasoning in Ratio Relationships <br> 6 M1 Lesson 11: Applications of Ratio Reasoning |
| 6.RP. 2 <br> Investigate relationships between ratios and rates. | This standard is fully addressed by the lessons aligned to its subsections. |
| 6.RP.2.a <br> Translate between multiple representations of ratios (i.e., $\frac{a}{b}$, $a: b, a$ to $b$, visual models). | 6 M1 Lesson 2: Introduction to Ratios <br> 6 M1 Lesson 3: Ratios and Tape Diagrams <br> 6 M1 Lesson 4: Exploring Ratios by Making Batches <br> 6 M1 Lesson 5: Equivalent Ratios <br> 6 M1 Lesson 8: Addition Patterns in Ratio Relationships <br> 6 M1 Lesson 10: Multiplicative Reasoning in Ratio Relationships <br> 6 M1 Lesson 11: Applications of Ratio Reasoning <br> 6 M1 Lesson 15: The Value of the Ratio <br> 6 M1 Lesson 16: Speed <br> 6 M1 Lesson 17: Rates <br> 6 M1 Lesson 18: Comparing Rates <br> 6 M1 Lesson 19: Using Rates to Convert Units <br> 6 M1 Lesson 20: Solving Rate Problems |


| South Carolina College and Career <br> Ready Standards for Mathematics |  |
| :--- | :--- |
| 6.RP.2.b |  |
| Recognize that a rate is a type of ratio <br> involving two different units. | 6 M1 Lesson 15: The Value of the Ratio Components of Eureka Math ${ }^{2}$ |
|  | 6 M1 Lesson 16: Speed |
|  | 6 M1 Lesson 17: Rates |
|  | 6 M1 Lesson 18: Comparing Rates |
| 6.RP.2.c | 6 M1 Lesson 19: Using Rates to Convert Units |
| Convert from rates to unit rates. | 6 M1 Lesson 15: The Value of the Ratio |

South Carolina College and Career Ready Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$
6.RP.3.b
Use multiple representations, including tape diagrams, tables, double number lines, and equations, to find missing values of equivalent ratios.

6 M1 Topic B: Collections of Equivalent Ratios
6 M1 Topic C: Comparing Ratio Relationships
6 M1 Lesson 16: Speed
6 M1 Lesson 18: Comparing Rates

6 M1 Topic B: Collections of Equivalent Ratios
6 M1 Topic C: Comparing Ratio Relationships
6 M1 Lesson 16: Speed
6 M1 Lesson 18: Comparing Rates

## 6 M1 Topic D: Rates

6 M5 Lesson 8: Areas of Composite Figures in Real-World Situations
6 M5 Lesson 13: Surface Area in Real-World Situations

6 M1 Topic E: Percents

6 M1 Lesson 1: Jars of Jelly Beans
6 M1 Lesson 3: Ratios and Tape Diagrams
6 M1 Lesson 4: Exploring Ratios by Making Batches
6 M1 Lesson 5: Equivalent Ratios
6 M1 Lesson 6: Ratio Tables and Double Number Lines
6 M1 Lesson 8: Addition Patterns in Ratio Relationships

South Carolina College and Career Ready Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

## 6.RP.3.f continued

6 M1 Lesson 9: Multiplication Patterns in Ratio Relationships

6 M1 Lesson 10: Multiplicative Reasoning in Ratio Relationships<br>6 M1 Lesson 11: Applications of Ratio Reasoning<br>6 M1 Lesson 19: Using Rates to Convert Units<br>6 M1 Lesson 20: Solving Rate Problems<br>6 M1 Lesson 21: Solving Multi-Step Rate Problems<br>6 M4 Lesson 22: Relationship Between Two Variables<br>6 M4 Lesson 23: Graphs of Ratio Relationships

## Expressions, Equations, and Inequalities

## 6.EEI Expressions, Equations, and Inequalities

## South Carolina College and Career <br> Ready Standards for Mathematics

## Aligned Components of Eureka Math ${ }^{2}$

## 6.EEI. 1

Write and evaluate numerical expressions involving whole-number exponents and positive rational number bases using the Order of Operations.
6.EEI. 2

Extend the concepts of numerical expressions to algebraic expressions involving positive rational numbers.

6 M4 Topic A: Numerical Expressions

This standard is fully addressed by the lessons aligned to its subsections.

## South Carolina College and Career

 Ready Standards for Mathematics
## Aligned Components of Eureka Math ${ }^{2}$

## 6.EEI.2.a

Translate between algebraic expressions and verbal phrases that include variables.

## 6.EEI.2.b

Investigate and identify parts of algebraic expressions using mathematical terminology, including term, coefficient, constant, and factor.

6 M4 Lesson 7: Algebraic Expressions with Addition and Subtraction
6 M4 Lesson 8: Algebraic Expressions with Addition, Subtraction, Multiplication, and Division
6 M4 Lesson 9: Addition and Subtraction Expressions from Real-World Situations

6 M4 Lesson 7: Algebraic Expressions with Addition and Subtraction
6 M4 Lesson 8: Algebraic Expressions with Addition, Subtraction, Multiplication, and Division
6 M4 Lesson 9: Addition and Subtraction Expressions from Real-World Situations
6 M4 Lesson 11: Modeling Real-World Situations with Expressions

6 M4 Lesson 8: Algebraic Expressions with Addition, Subtraction, Multiplication, and Division
6 M4 Lesson 11: Modeling Real-World Situations with Expressions
6 M4 Lesson 12: Applying Properties to Multiplication and Division Expressions
6 M4 Lesson 17: Equations and Solutions
6 M5 Lesson 1: The Area of a Parallelogram
6 M5 Lesson 3: The Area of a Triangle
6 M5 Lesson 12: From Nets to Surface Area
6 M5 Lesson 13: Surface Area in Real-World Situations
6 M5 Lesson 14: Designing a Box
6 M5 Lesson 16: Applying Volume Formulas
6 M4 Topic C: Equivalent Expressions Using the Properties of Operations
6 M5 Lesson 4: Areas of Triangles in Real-World Situations
6 M5 Lesson 6: Problem Solving with Area in the Coordinate Plane
6 M5 Lesson 7: Areas of Trapezoids and Other Polygons

| South Carolina College and Career Ready Standards for Mathematics | Aligned Components of Eureka Math² |
| :---: | :---: |
| 6.EEI. 4 <br> Apply mathematical properties (e.g., commutative, associative, distributive) to justify that two expressions are equivalent. | 6 M4 Topic C: Equivalent Expressions Using the Properties of Operations <br> 6 M5 Lesson 7: Areas of Trapezoids and Other Polygons <br> 6 M5 Lesson 12: From Nets to Surface Area <br> 6 M5 Lesson 17: Problem Solving with Volume |
| 6.EEI. 5 <br> Understand that if any solutions exist, the solution set for an equation or inequality consists of values that make the equation or inequality true. | 6 M4 Lesson 17: Equations and Solutions <br> 6 M4 Lesson 18: Inequalities and Solutions <br> 6 M4 Lesson 19: Solving Equations with Addition and Subtraction <br> 6 M4 Lesson 20: Solving Equations with Multiplication and Division |
| 6.EEI. 6 <br> Write expressions using variables to represent quantities in real-world and mathematical situations. Understand the meaning of the variable in the context of the situation. | 6 M4 Lesson 9: Addition and Subtraction Expressions from Real-World Situations <br> 6 M4 Lesson 10: Multiplication and Division Expressions from Real-World Situations <br> 6 M4 Lesson 11: Modeling Real-World Situations with Expressions <br> 6 M4 Lesson 16: Equivalent Algebraic Expressions |
| 6.EEI. 7 <br> Write and solve one-step linear equations in one variable involving nonnegative rational numbers for real-world and mathematical situations. | 6 M4 Lesson 17: Equations and Solutions <br> 6 M4 Lesson 19: Solving Equations with Addition and Subtraction <br> 6 M4 Lesson 20: Solving Equations with Multiplication and Division <br> 6 M4 Lesson 21: Solving Problems with Equations <br> 6 M5 Lesson 2: The Area of a Right Triangle |


| South Carolina College and Career <br> Ready Standards for Mathematics |  |
| :--- | :--- |
| 6.EEI.8 <br> Extend knowledge of inequalities used <br> to compare numerical expressions <br> to include algebraic expressions <br> in real-world and mathematical <br> situations. | This standard is fully addressed by the lessons aligned to its subsections. |
| 6.EEI.8.a |  |
| Write an inequality of the form $x>c$ |  |
| or $x<c$ and graph the solution set on |  |
| a number line. | 6 M4 Lesson 18: Inequalities and Solutions |
| 6.EEI.8.b <br> Recognize that inequalities have <br> infinitely many solutions. | 6 M4 Lesson 18: Inequalities and Solutions |
| 6.EEl.9 |  |
| Investigate multiple representations |  |
| of relationships in real-world and |  |
| mathematical situations. | This standard is fully addressed by the lessons aligned to its subsections. |
| 6.EEl.9.a |  |
| Write an equation that models |  |
| a relationship between independent |  |
| and dependent variables. | 6 M4 Topic E: Relating Variables by Using Tables, Graphs, and Equations |


| South Carolina College and Career <br> Ready Standards for Mathematics | Aligned Components of Eureka Math ${ }^{2}$ |
| :--- | :--- |
| 6.EEl.9.b | 6 M4 Topic E: Relating Variables by Using Tables, Graphs, and Equations |
| Analyze the relationship between |  |
| independent and dependent variables |  |
| using graphs and tables. |  |
| 6.EEl.9.c |  |
| Translate among graphs, tables, and |  |
| equations. |  |

## Geometry and Measurement

## 6.GM Geometry and Measurement

## South Carolina College and Career <br> Ready Standards for Mathematics

## Aligned Components of Eureka Math ${ }^{2}$

## 6.GM. 1

Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.

## South Carolina College and Career Ready Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

## 6.GM. 2 6 M5 Topic D: Volumes of Right Rectangular Prisms

Use visual models (e.g., model by packing) to discover that the formulas for the volume of a right rectangular prism ( $V=l w h, V=B h$ ) are the same for whole or fractional edge lengths. Apply these formulas to solve real-world and mathematical problems.
6.GM.3 $\quad$ This standard is fully addressed by the lessons aligned to its subsections.

Apply the concepts of polygons and the coordinate plane to real-world and mathematical situations.

## 6.GM.3.a

Given coordinates of the vertices, draw a polygon in the coordinate plane.

## 6.GM.3.b

Find the length of an edge if the vertices have the same $x$-coordinates or same $y$-coordinates.

## 6.GM. 4

Unfold three-dimensional figures into two-dimensional rectangles and triangles (nets) to find the surface area and to solve real-world and mathematical problems.

This standard is fully addressed by the lessons aligned to its subsections.

6 M5 Lesson 5: Perimeter and Area in the Coordinate Plane
6 M5 Lesson 6: Problem Solving with Area in the Coordinate Plane

6 M5 Lesson 5: Perimeter and Area in the Coordinate Plane
6 M5 Lesson 6: Problem Solving with Area in the Coordinate Plane

6 M5 Topic C: Nets and Surface Area
6 M5 Lesson 19: Volume and Surface Area in Real-World Situations

## Data Analysis and Statistics

## 6.DS Data Analysis and Statistics

## South Carolina College and Career Ready Standards for Mathematics

## Aligned Components of Eureka Math ${ }^{2}$



| South Carolina College and Career Ready Standards for Mathematics | Aligned Components of Eureka Math² |
| :---: | :---: |
| 6.DS. 4 continued | 6 M6 Lesson 14: Using a Box Plot to Summarize a Distribution <br> 6 M6 Lesson 15: More Practice with Box Plots <br> 6 M6 Lesson 16: Interpreting Box Plots <br> 6 M6 Lesson 19: Comparing Data Distributions <br> 6 M6 Lesson 22: Presenting Statistical Projects |
| 6.DS. 5 <br> Describe numerical data sets in relation to their real-world context. | Supplemental material is necessary to address the impact that inserting or deleting a data point has on the measures of center for a data set. Otherwise, this standard is fully addressed by the lessons aligned to its subsections. |
| 6.DS.5.a <br> State the sample size. | 6 M6 Lesson 2: Describing a Data Distribution |
| 6.DS.5.b <br> Describe the qualitative aspects of the data (e.g., how it was measured, units of measurement). | 6 M6 Lesson 1: Posing Statistical Questions <br> 6 M6 Lesson 5: Comparing Data Displays <br> 6 M6 Lesson 17: Developing a Statistical Project <br> 6 M6 Lesson 21: Comparing Measures of Variability |
| 6.DS.5.c <br> Give measures of center (median, mean). | 6 M6 Lesson 7: Using the Mean to Describe the Center <br> 6 M6 Lesson 8: The Mean as a Balance Point <br> 6 M6 Lesson 10: The Mean Absolute Deviation <br> 6 M6 Lesson 11: Using the Mean and Mean Absolute Deviation <br> 6 M6 Lesson 12: Using the Median to Describe the Center <br> 6 M6 Lesson 13: Using the Interquartile Range to Describe Variability <br> 6 M6 Lesson 18: Connecting Graphical Representations and Summary Measures <br> 6 M6 Lesson 21: Comparing Measures of Variability |


| South Carolina College and Career Ready Standards for Mathematics | Aligned Components of Eureka Math² |
| :---: | :---: |
| 6.DS.5.d <br> Find measures of variability (interquartile range, mean absolute deviation) using a number line. | 6 M6 Lesson 7: Using the Mean to Describe the Center <br> 6 M6 Lesson 8: The Mean as a Balance Point <br> 6 M6 Lesson 10: The Mean Absolute Deviation <br> 6 M6 Lesson 11: Using the Mean and Mean Absolute Deviation <br> 6 M6 Lesson 12: Using the Median to Describe the Center <br> 6 M6 Lesson 13: Using the Interquartile Range to Describe Variability <br> 6 M6 Lesson 18: Connecting Graphical Representations and Summary Measures <br> 6 M6 Lesson 21: Comparing Measures of Variability |
| 6.DS.5.e <br> Describe the overall pattern (shape) of the distribution. | 6 M6 Lesson 7: Using the Mean to Describe the Center <br> 6 M6 Lesson 8: The Mean as a Balance Point <br> 6 M6 Lesson 10: The Mean Absolute Deviation <br> 6 M6 Lesson 11: Using the Mean and Mean Absolute Deviation <br> 6 M6 Lesson 12: Using the Median to Describe the Center <br> 6 M6 Lesson 13: Using the Interquartile Range to Describe Variability <br> 6 M6 Lesson 18: Connecting Graphical Representations and Summary Measures <br> 6 M6 Lesson 21: Comparing Measures of Variability |
| 6.DS.5.f <br> Justify the choices for measure of center and measure of variability based on the shape of the distribution. | 6 M6 Lesson 20: Choosing a Measure of Center |

## South Carolina College and Career Ready Standards for Mathematics

## Aligned Components of Eureka Math ${ }^{2}$

## 6.DS.5.g

Describe the impact that inserting or deleting a data point has on the measures of center (median, mean) for a data set.


[^0]:    6 M1 Lesson 2: Introduction to Ratios
    6 M1 Lesson 3: Ratios and Tape Diagrams
    6 M1 Lesson 4: Exploring Ratios by Making Batches
    6 M1 Lesson 5: Equivalent Ratios
    6 M1 Lesson 8: Addition Patterns in Ratio Relationships

