Grade 8 | Missouri Mathematics Learning Standards Correlation to Eureka Math ${ }^{2 \mathrm{TM}}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 T M}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

MP. $\mathbf{1}$ Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. $\mathbf{2}$ Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. $\mathbf{3}$ Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. $\mathbf{4}$ Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. $\mathbf{5}$	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. $\mathbf{6}$	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. \mathbf{C}	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. $\mathbf{8}$	
Look for and make use of structure.	

Number Sense and Operations

8.NS.A Know that there are numbers that are not rational, and approximate them by rational numbers.

Missouri Mathematics
 Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

8.NS.A. 1

Explore the real number system.

8.NS.A.1.a

Know the differences between rational and irrational numbers.
K._

8.NS.A.1.b
 Understand that all rational numbers

 have a decimal expansion that terminates or repeats.
8.NS.A.1.c

Convert decimals which repeat into fractions and fractions into repeating decimals.

8.NS.A.1.d

Generate equivalent representations of rational numbers.

8.NS.A. 2

Estimate the value and compare the size of irrational numbers and approximate their locations on a number line.

This standard is fully addressed by the lessons aligned to its subsections.

8 M4 Lesson 5: An Interesting Application of Linear Equations, Part 1
8 M4 Lesson 6: An Interesting Application of Linear Equations, Part 2

8 M4 Lesson 5: An Interesting Application of Linear Equations, Part 1
8 M4 Lesson 6: An Interesting Application of Linear Equations, Part 2

8 M4 Lesson 5: An Interesting Application of Linear Equations, Part 1
8 M4 Lesson 6: An Interesting Application of Linear Equations, Part 2

8 M4 Lesson 5: An Interesting Application of Linear Equations, Part 1
8 M4 Lesson 6: An Interesting Application of Linear Equations, Part 2

8 M1 Lesson 21: Approximating Values of Roots and π^{2}
8 M1 Lesson 23: Ordering Irrational Numbers

Expressions, Equations and Inequalities

8.EEI.A Work with radicals and integer exponents.

Missouri Mathematics
 Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

8.EEI.A.1 Know and apply the properties of integer exponents to generate equivalent expressions.	8 M1 Topic B: Properties and Definitions of Exponents
8.EEI.A.2 Investigate concepts of square and cube roots.	This standard is fully addressed by the lessons aligned to its subsections.
8.EEI.A.2.a	Solve equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number.
8 M1 Lesson 17: Solving Equations with Squares and Cubes	
8 M1 Lesson 20: Square Roots	

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

8.EEI.A.2.c	8 M1 Lesson 16: Perfect Squares and Perfect Cubes
Recognize that square roots of non-perfect squares are irrational.	8 M1 Lesson 17: Solving Equations with Squares and Cubes
	8 M1 Lesson 20: Square Roots
	8 M1 Lesson 22: Familiar and Not So Familiar Numbers
	8 M1 Lesson 24: Revisiting Equations with Squares and Cubes
8.EEI.A. 3	8 M1 Lesson 1: Large and Small Positive Numbers
Express very large and very small quantities in scientific notation and approximate how many times larger one is than the other.	8 M1 Lesson 2: Comparing Large Numbers
	8 M1 Lesson 3: Time to Be More Precise-Scientific Notation
	8 M1 Lesson 7: Making Sense of the Exponent of 0
	8 M1 Lesson 11: Small Positive Numbers in Scientific Notation
8.EEI.A. 4	This standard is fully addressed by the lessons aligned to its subsections.
Use scientific notation to solve problems.	
8.EEI.A.4.a	8 M1 Lesson 2: Comparing Large Numbers
Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used.	8 M1 Lesson 4: Adding and Subtracting Numbers Written in Scientific Notation
	8 M1 Lesson 12: Operations with Numbers in Scientific Notation
	8 M1 Lesson 13: Applications with Numbers in Scientific Notation
	8 M1 Lesson 14: Choosing Units of Measurement
	8 M1 Lesson 15: Get to the Point

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

8.EEI.A.4.b

Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities.

8 M1 Lesson 2: Comparing Large Numbers
8 M1 Lesson 4: Adding and Subtracting Numbers Written in Scientific Notation
8 M1 Lesson 12: Operations with Numbers in Scientific Notation
8 M1 Lesson 13: Applications with Numbers in Scientific Notation
8 M1 Lesson 14: Choosing Units of Measurement
8 M1 Lesson 15: Get to the Point

Expressions, Equations and Inequalities
8.EEI.B Understand the connections between proportional relationships, lines and linear equations.

Missouri Mathematics
Learning Standards

8.EEI.B.5 Graph proportional relationships.	This standard is fully addressed by the lessons aligned to its subsections.
8.EEI.B.5.a Interpret the unit rate as the slope of the graph.	8 M 4 Lesson 15: Comparing Proportional Relationships
8.EEI.B.5.b Compare two different proportional relationships.	8 M 4 Lesson 16: Proportional Relationships and Slope
8.EEI.B.6 Apply concepts of slope and y-intercept to graphs, equations and proportional relationships.	8 M4 Lesson 12: Solutions to Linear Equations in Two Variables Proportional Relationships and Slope

Missouri Mathematics Learning Standards	Aligned Components of Eureka Math²
8.EEI.B. 6 continued	8 M4 Lesson 14: Lines with Special Characteristics 8 M4 Lesson 16: Proportional Relationships and Slope 8 M4 Lesson 17: Slopes of Rising Lines 8 M4 Lesson 18: Slopes of Falling Lines 8 M4 Lesson 19: Using Coordinates to Find Slope 8 M4 Lesson 20: Slope-Intercept Form of the Equation of a Line 8 M4 Lesson 21: Slope and Parallel Lines 8 M4 Lesson 22: Point-Slope Form of the Equation of a Line 8 M4 Lesson 23: Comparing Equations in Different Forms 8 M4 Lesson 24: The Patterns, the Pops, and the Pastries 8 M4 Lesson 25: Lines, Lines, and More Lines 8 M4 Lesson 26: Linear Equations from Word Problems 8 M4 Lesson 27: Get to Work
8.EEI.B.6.a Explain why the slope (m) is the same between any two distinct points on a non-vertical line in the Cartesian coordinate plane.	8 M3 Lesson 17: Similar Triangles on a Line 8 M4 Lesson 16: Proportional Relationships and Slope 8 M4 Lesson 17: Slopes of Rising Lines 8 M4 Lesson 18: Slopes of Falling Lines 8 M4 Lesson 19: Using Coordinates to Find Slope 8 M4 Lesson 20: Slope-Intercept Form of the Equation of a Line

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

8.EEI.B.6.b

Derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.

8 M3 Lesson 17: Similar Triangles on a Line
8 M4 Lesson 16: Proportional Relationships and Slope
8 M4 Lesson 17: Slopes of Rising Lines
8 M4 Lesson 18: Slopes of Falling Lines
8 M4 Lesson 19: Using Coordinates to Find Slope
8 M4 Lesson 20: Slope-Intercept Form of the Equation of a Line

Expressions, Equations and Inequalities
8.EEI.C Analyze and solve linear equations and inequalities and pairs of simultaneous linear equations.

Missouri Mathematics
Learning Standards

8.EEI.C. 7

Solve linear equations and inequalities in one variable.

8 M4 Lesson 2: Solving Linear Equations
8 M4 Lesson 3: Solving Linear Equations with Rational Coefficients
8 M4 Lesson 4: Using Linear Equations to Solve Problems
8 M4 Lesson 10: Using Linear Equations to Solve Real-World Problems
8 M4 Lesson 11: Planning a Trip
A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
8 M4 Lesson 7: Linear Equations with More than One Solution
8 M4 Lesson 8: Another Possible Number of Solutions
8 M4 Lesson 9: Writing Linear Equations
8 M4 Lesson 10: Using Linear Equations to Solve Real-World Problems

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

8.EEI.C.7.b

Solve linear equations and inequalities with rational number coefficients, including equations and inequalities whose solutions require expanding expressions using the distributive property and combining like terms.

8 M4 Lesson 1: Equations
8 M4 Lesson 2: Solving Linear Equations
8 M4 Lesson 3: Solving Linear Equations with Rational Coefficients
8 M4 Lesson 5: An Interesting Application of Linear Equations, Part 1
8 M4 Lesson 6: An Interesting Application of Linear Equations, Part 2
8 M4 Lesson 7: Linear Equations with More than One Solution
8 M4 Lesson 8: Another Possible Number of Solutions
8 M4 Lesson 10: Using Linear Equations to Solve Real-World Problems
8 M4 Lesson 11: Planning a Trip
A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
This standard is fully addressed by the lessons aligned to its subsections.
Analyze and solve systems of linear equations.

8.EEI.C.8.a

Graph systems of linear equations and recognize the intersection as the solution to the system.

8.EEI.C.8.b

Explain why solution(s) to a system of two linear equations in two variables correspond to point(s) of intersection of the graphs.

8 M5 Topic A: Solving Systems of Linear Equations Graphically
8 M5 Lesson 7: The Substitution Method
8 M5 Lesson 10: Choosing a Solution Method
8 M5 Lesson 14: Back to the Coordinate Plane

8 M5 Topic A: Solving Systems of Linear Equations Graphically
8 M5 Lesson 7: The Substitution Method
8 M5 Lesson 10: Choosing a Solution Method
8 M5 Lesson 14: Back to the Coordinate Plane

Missouri Mathematics Learning Standards	Aligned Components of Eureka Math²
8.EEI.C.8.c Explain why systems of linear equations can have one solution, no solution or infinitely many solutions.	8 M5 Lesson 1: Solving Problems with Equations and Their Graphs 8 M5 Topic C: Writing and Solving Systems of Linear Equations
8.EEI.C.8.d Solve systems of two linear equations.	8 M5 Lesson 1: Solving Problems with Equations and Their Graphs 8 M5 Lesson 3: Identifying Solutions 8 M5 Lesson 4: More Than One Solution 8 M5 Lesson 5: Estimating Solutions 8 M5 Topic B: Solving Systems of Equations Algebraically 8 M5 Topic C: Writing and Solving Systems of Linear Equations A1 M2 Lesson 9: A New Way to Solve Systems A1 M2 Lesson 10: The Elimination Method
Geometry and Measurement 8.GM.A Understand congruence and similarity using physical models, transparencies or geometry software. Missouri Mathematics Learning Standards Aligned Components of Eureka Math ${ }^{2}$	
8.GM.A. 1 Verify experimentally the congruence properties of rigid transformations.	This standard is fully addressed by the lessons aligned to its subsections.
8.GM.A.1.a Verify that angle measure, betweenness, collinearity and distance are preserved under rigid transformations.	8 M2 Lesson 1: Motions of the Plane 8 M2 Lesson 2: Translations 8 M2 Lesson 3: Reflections

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

8.GM.A.1.a continued	8 M2 Lesson 5: Rotations 8 M2 Lesson 7: Working Backward 8 M2 Lesson 8: Sequencing the Rigid Motions
8.GM.A.1.b Investigate if orientation is preserved under rigid transformations.	8 M2 Lesson 5: Rotations
8.GM.A. 2 Understand that two-dimensional figures are congruent if a series of rigid transformations can be performed to map the pre-image to the image.	This standard is fully addressed by the lessons aligned to its subsection.
8.GM.A.2.a Describe a possible sequence of rigid transformations between two congruent figures.	8 M2 Topic B: Rigid Motions and Congruent Figures 8 M2 Lesson 12: Lines Cut by a Transversal
8.GM.A. 3 Describe the effect of dilations, translations, rotations and reflections on two-dimensional figures using coordinates.	8 M2 Lesson 4: Translations and Reflections on the Coordinate Plane 8 M2 Lesson 6: Rotations on the Coordinate Plane 8 M2 Lesson 9: Ordering Sequences of Rigid Motions 8 M3 Topic A: Dilations 8 M3 Topic B: Properties of Dilations 8 M3 Lesson 9: Describing Dilations 8 M3 Lesson 10: Sequencing Transformations 8 M3 Lesson 16: Similar Right Triangles

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

8.GM.A. 4 Understand that two-dimensional figures are similar if a series of transformations (rotations, reflections, translations and dilations) can be performed to map the pre-image to the image.	This standard is fully addressed by the lessons aligned to its subsection.
8.GM.A.4.a	8 M3 Lesson 11: Similar Figures
Describe a possible sequence of transformations between two similar figures.	8 M3 Lesson 12: Exploring Angles in Similar Triangles
	8 M3 Lesson 13: Similar Triangles
	8 M3 Lesson 17: Similar Triangles on a Line
8.GM.A. 5 Explore angle relationships and establish informal arguments.	This standard is fully addressed by the lessons aligned to its subsections.
8.GM.A.5.a Derive the sum of the interior angles of a triangle.	8 M2 Topic C: Angle Relationships
	8 M3 Lesson 12: Exploring Angles in Similar Triangles
	8 M3 Lesson 13: Similar Triangles
	8 M3 Lesson 14: Using Similar Figures to Find Unknown Side Lengths
	8 M3 Lesson 15: Applications of Similar Figures
	8 M3 Lesson 16: Similar Right Triangles
8.GM.A.5.b Explore the relationship between the interior and exterior angles of a triangle.	8 M2 Topic C: Angle Relationships
	8 M3 Lesson 12: Exploring Angles in Similar Triangles
	8 M3 Lesson 13: Similar Triangles
	8 M3 Lesson 14: Using Similar Figures to Find Unknown Side Lengths

Missouri Mathematics Learning Standards	Aligned Components of Eureka Math²
8.GM.A.5.b continued	8 M3 Lesson 15: Applications of Similar Figures 8 M3 Lesson 16: Similar Right Triangles
8.GM.A.5.c Construct and explore the angles created when parallel lines are cut by a transversal.	8 M2 Topic C: Angle Relationships 8 M3 Lesson 12: Exploring Angles in Similar Triangles 8 M3 Lesson 13: Similar Triangles 8 M3 Lesson 14: Using Similar Figures to Find Unknown Side Lengths 8 M3 Lesson 15: Applications of Similar Figures 8 M3 Lesson 16: Similar Right Triangles
8.GM.A.5.d Use the properties of similar figures to solve problems.	8 M3 Lesson 11: Similar Figures 8 M3 Lesson 12: Exploring Angles in Similar Triangles 8 M3 Lesson 13: Similar Triangles 8 M3 Lesson 17: Similar Triangles on a Line

Geometry and Measurement

8.GM.B Understand and apply the Pythagorean Theorem.

Missouri Mathematics
Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

8.GM.B. 6

Use models to demonstrate a proof of the Pythagorean Theorem and its converse.

8 M2 Lesson 17: Proving the Pythagorean Theorem
8 M2 Lesson 18: Proving the Converse of the Pythagorean Theorem
8 M2 Lesson 19: Using the Pythagorean Theorem and Its Converse

Missouri Mathematics Learning Standards	Aligned Components of Eureka Math ${ }^{2}$
8.GM.B. 7 Use the Pythagorean Theorem to determine unknown side lengths in right triangles in problems in two- and three-dimensional contexts.	8 M1 Lesson 18: The Pythagorean Theorem 8 M1 Lesson 19: Using the Pythagorean Theorem 8 M1 Lesson 20: Square Roots 8 M2 Lesson 19: Using the Pythagorean Theorem and Its Converse 8 M2 Lesson 21: Applying the Pythagorean Theorem 8 M2 Lesson 22: On the Right Path 8 M3 Lesson 16: Similar Right Triangles
8.GM.B. 8 Use the Pythagorean Theorem to find the distance between points in a Cartesian coordinate system.	8 M2 Lesson 20: Distance in the Coordinate Plane 8 M2 Lesson 22: On the Right Path

Geometry and Measurement

8.GM.C Solve problems involving volume of cones, pyramids and spheres.

Missouri Mathematics
 Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

8.GM.C.9	This standard is fully addressed by the lessons aligned to its subsections.
Solve problems involving surface area and volume.	
8.GM.C.9.a	7 M4 Lesson 20: Surface Area of Right Pyramids
Understand the concept of surface area and find surface area of pyramids.	

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

8.GM.C.9.b

Understand the concept of volume and find the volume of pyramids, cones and spheres.

8 M6 Topic E: Volume

Data Analysis, Statistics and Probability 8.DSP.A Investigate patterns of association in bivariate data.

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

8.DSP.A. 1	8 M6 Lesson 11: Scatter Plots
Construct and interpret scatter plots of bivariate measurement data to investigate patterns of association between two quantities.	8 M6 Lesson 12: Patterns in Scatter Plots
8.DSP.A. 2 Generate and use a trend line for bivariate data, and informally assess the fit of the line.	8 M6 Lesson 13: Informally Fitting a Line to Data 8 M6 Lesson 15: Linear Models 8 M6 Lesson 16: Using the Investigative Process 8 M6 Lesson 17: Analyzing the Model
8.DSP.A. 3 Interpret the parameters of a linear model of bivariate measurement data to solve problems.	8 M6 Lesson 6: Linear Functions and Rate of Change 8 M6 Lesson 7: Interpreting Rate of Change and Initial Value 8 M6 Lesson 14: Determining an Equation of a Line Fit to Data 8 M6 Lesson 15: Linear Models 8 M6 Lesson 16: Using the Investigative Process 8 M6 Lesson 17: Analyzing the Model

Missouri Mathematics Learning Standards	
8.DSP.A.4 Understand the patterns of association in bivariate categorical data displayed in a two-way table.	This standard is fully addressed by the lessons aligned to its subsections.
8.DSP.A.4.a Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects.	8 M6 Topic D: Bivariate Categorical Data
8.DSP.A.4.b Use relative frequencies calculated for rows or columns to describe possible association between the two variables.	8 M6 Topic D: Bivariate Categorical Data

Functions

8.F.A Define, evaluate and compare functions.

Missouri Mathematics
Learning Standards
8.F.A. 1

Explore the concept of functions. (The use of function notation is not required.)

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

8.F.A.1.a	8 M6 Lesson 1: Motion and Speed
Understand that a function assigns	8 M6 Lesson 2: Definition of a Function
to each input exactly one output.	8 M6 Lesson 4: More Examples of Functions
	8 M6 Lesson 5: Graphs of Functions and Equations
8.F.A.1.b	8 M6 Lesson 1: Motion and Speed
Determine if a relation is a function.	8 M6 Lesson 2: Definition of a Function
	8 M6 Lesson 4: More Examples of Functions
	8 M6 Lesson 5: Graphs of Functions and Equations
8.F.A.1.C	8 M6 Lesson 1: Motion and Speed
Graph a function.	8 M6 Lesson 2: Definition of a Function
	8 M6 Lesson 4: More Examples of Functions
	8 M6 Lesson 5: Graphs of Functions and Equations
8.F.A. 2	8 M6 Lesson 7: Interpreting Rate of Change and Initial Value
Compare characteristics of two functions each represented in a different way.	8 M6 Lesson 8: Comparing Functions
8.F.A. 3	This standard is fully addressed by the lessons aligned to its subsections.
Investigate the differences between linear and nonlinear functions.	

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

	8 M6 Lesson 3: Linear Functions and Proportionality
Interpret the equation $y=m x+b$ as defining a linear function, whose parameters are the slope (m) and the y-intercept (b).	8 M6 Lesson 6: Linear Functions and Rate of Change 8 M6 Lesson 10: Graphs of Nonlinear Functions
8.F.A.3.b	8 M6 Lesson 3: Linear Functions and Proportionality
Recognize that the graph of a linear function has a constant rate of change.	8 M6 Lesson 6: Linear Functions and Rate of Change 8 M6 Lesson 10: Graphs of Nonlinear Functions
8.F.A.3.C	8 M6 Lesson 3: Linear Functions and Proportionality
Give examples of nonlinear functions.	8 M6 Lesson 6: Linear Functions and Rate of Change 8 M6 Lesson 10: Graphs of Nonlinear Functions

Functions

8.F.B Use functions to model relationships between quantities.

Missouri Mathematics
 Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

8.F.B. 4

Use functions to model linear relationships between quantities.

8.F.B.4.a

Explain the parameters of a linear function based on the context of a problem.

This standard is fully addressed by the lessons aligned to its subsections.

8 M6 Lesson 6: Linear Functions and Rate of Change
8 M6 Lesson 7: Interpreting Rate of Change and Initial Value
8 M6 Lesson 25: Applications of Volume

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

8.F.B.4.b Determine the parameters of a linear function.	8 M 6 Lesson 6: Linear Functions and Rate of Change 8 M 6 Lesson 7: Interpreting Rate of Change and Initial Value 8 M 6 Lesson 25: Applications of Volume
8.F.B.4.c Determine the x-intercept of a linear function. 8.F.B.5 Describe the functional relationship between two quantities from a graph or a verbal description.8 M 6 Lesson 6: Linear Functions and Rate of Change 8 M 6 Lesson 7: Interpreting Rate of Change and Initial Value	

