Grade 9 | Massachusetts Curriculum Framework for Mathematics Correlation to Eureka Math ${ }^{\text {2Tм }}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 T M}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math ${ }^{2}$ incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math ${ }^{2}$ teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Mathematical Practice Standards

Aligned Components of Eureka Math ${ }^{2}$

MP. 1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are noted in margin boxes included with every lesson.
MP. $\mathbf{2}$ Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are noted in margin boxes included with every lesson.
MP. $\mathbf{3}$ Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are noted in margin boxes included with every lesson.
MP.4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are noted in margin boxes included with every lesson.
MP. $\mathbf{5}$	Lessons in every module engage students in mathematical practices. These are noted in margin boxes included with every lesson.
Mse appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are noted in margin boxes included with every lesson.
Attend to precision.	Lessons in every module engage students in mathematical practices. These are noted in margin boxes included with every lesson.
MP. \mathbf{C} Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are noted in margin boxes included with every lesson.
MP.8	
Look for and express regularity in repeated reasoning.	

The Real Number System

AI.N-RN.A Extend the properties of exponents to rational exponents.

Massachusetts Curriculum
Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.N-RN.A. 1

Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.

AI.N-RN.A. 2

Rewrite expressions involving radicals and rational exponents using the properties of exponents.

A1 M5 Lesson 9: Unit Fraction Exponents
A1 M5 Lesson 10: Rational Exponents

A1 M5 Lesson 9: Unit Fraction Exponents
A1 M5 Lesson 10: Rational Exponents

The Real Number System

AI.N-RN.B Use properties of rational and irrational numbers.

Massachusetts Curriculum
 Framework for Mathematics

Aligned Components of Eureka Math²

AI.N-RN.B. 3

Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
A1 M4 Lesson 17: Rewriting Square Roots

Quantities

AI.N-Q.A Reason quantitatively and use units to solve problems.

Massachusetts Curriculum
Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.N-Q.A. 1	A1 M6 Lesson 5: Solar System Models
Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	
AI.N-Q.A.2	A1 M4 Lesson 25: Maximizing Area
Define appropriate quantities for the purpose of descriptive modeling.	A1 M6 Lesson 5: Solar System Models
AI.N-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	A1 M6 Lesson 5: Solar System Models

Seeing Structure in Expressions

AI.A-SSE.A Interpret the structure of linear, quadratic, and exponential expressions with integer exponents.

Massachusetts Curriculum
Framework for Mathematics
Aligned Components of Eureka Math ${ }^{2}$

AI.A-SSE.A. 1	This standard is fully addressed by the lessons aligned to its subsections.
Interpret expressions that represent a quantity in terms of its context.	

9 | Massachusetts Curriculum Framework for Mathematics Correlation to Eureka Math²

Massachusetts Curriculum Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.A-SSE.A.1.a Interpret parts of an expression, such as terms, factors, and coefficients.	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
AI.A-SSE.A.1.b	
Interpret complicated expressions by viewing one or more of their parts as a single entity.	A1 M5 Lesson 8: Exponential Functions A1 M5 Lesson 17: Exponential Decay A1 M5 Lesson 18: Modeling Populations A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
AI.A-SSE.A.2 Use the structure of an expression to identify ways to rewrite it.	A1 M1 Lesson 1: The Growing Pattern of Ducks A1 M1 Lesson 3: Polynomial Expressions A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Topic B: Factoring	
A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square	

Seeing Structure in Expressions

AI.A-SSE.B Write expressions in equivalent forms to solve problems.

Massachusetts Curriculum
Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.A-SSE.B. 3

Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

AI.A-SSE.B.3.a

Factor a quadratic expression to reveal the zeros of the function it defines.

AI.A-SSE.B.3.b

Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.

AI.A-SSE.B.3.c

Use the properties of exponents to transform expressions for exponential functions.

This standard is fully addressed by the lessons aligned to its subsections.

A1 M4 Lesson 10: Zeros of Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions

A1 M5 Lesson 11: Graphing Exponential Functions
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 18: Modeling Populations

Arithmetic with Polynomials and Rational Expressions

AI.A-APR.A Perform arithmetic operations on polynomials.

Massachusetts Curriculum
 Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.A-APR.A. 1
Understand that polynomials form
a system analogous to the integers,
namely, they are closed under certain
operations.

AI.A-APR.A.1.a

Perform operations on polynomial expressions (addition, subtraction, multiplication), and compare the system of polynomials to the system of integers when performing operations.

AI.A-APR.A.1.b

Factor and/or expand polynomial expressions, identify and combine like terms, and apply the
Distributive property.

A1 M1 Lesson 3: Polynomial Expressions
A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions
A1 M1 Lesson 5: Multiplying Polynomial Expressions
A1 M1 Lesson 6: Polynomial Identities

A1 M1 Lesson 3: Polynomial Expressions
A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions
A1 M1 Lesson 5: Multiplying Polynomial Expressions
A1 M1 Lesson 6: Polynomial Identities

Supplemental material is necessary to address this standard.

Creating Equations

AI.A-CED.A Create equations that describe numbers or relationships.

Massachusetts Curriculum Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.A-CED.A. 1

Create equations and inequalities in one variable and use them to solve problems. (Include equations arising from linear, quadratic, and exponential functions with integer exponents.)

A1 M1 Lesson 7: Printing Presses
A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable

AI.A-CED.A. 2

Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
A1 M2 Lesson 3: Creating Linear Equations in Two Variables
A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area
A1 M4 Lesson 26: Modeling Data with Quadratic Functions
A1 M4 Lesson 27: Search and Rescue Helicopter

Massachusetts Curriculum Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.A-CED.A. 3

Represent constraints by linear equations or inequalities, and by systems of linear equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context.

AI.A-CED.A. 4

Rearrange formulas to highlight a quantity of interest using the same reasoning as in solving equations (Properties of equality).

A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 M1 Lesson 14: Solution Sets of Compound Statements
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
A1 M6 Lesson 5: Solar System Models

A1 M1 Lesson 12: Rearranging Formulas
A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations

Reasoning with Equations and Inequalities

AI.A-REI.A Understand solving equations as a process of reasoning and explain the reasoning.

Massachusetts Curriculum Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.A-REI.A. 1

Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify or refute a solution method.

A1 M1 Lesson 9: Solving Linear Equations in One Variable
A1 M1 Lesson 10: Some Potential Dangers When Solving Equations
A1 M1 Lesson 11: Writing and Solving Equations in One Variable

Reasoning with Equations and Inequalities

AI.A-REI.B Solve equations and inequalities in one variable.

Massachusetts Curriculum

Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.A-REI.B.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. A1 M1 Lesson 7: Printing Presses A1 M1 Lesson 8: Solution Sets for Equations and Inequalities in One Variable A1 M1 Lesson 9: Solving Linear Equations in One Variable	A1 M1 Lesson 13: Solving Linear Inequalities in One Variable A1 M1 Lesson 15: Solving and Graphing Compound Inequalities A1 M1 Lesson 16: Solving Absolute Value Equations
Solve linear equations and inequalities in one variable involving absolute value.	A1 M1 Lesson 17: Solving Absolute Value Inequalities
AI.A-REI.B.4 Solve quadratic equations in one variable.	This standard is fully addressed by the lessons aligned to its subsections.
Al.A-REI.B.4.a Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form.	A1 M4 Lesson 15: Deriving the Quadratic Formula

Massachusetts Curriculum Framework for Mathematics

AI.A-REI.B.4.b

Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the solutions of a quadratic equation results in non-real solutions and write them as $a \pm b i$ for real numbers a and b.

Aligned Components of Eureka Math ${ }^{2}$

A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions
A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check
A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term
A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring
A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
A1 M4 Lesson 15: Deriving the Quadratic Formula
A1 M4 Lesson 16: Solving Quadratic Equations
A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function

Reasoning with Equations and Inequalities

AI.A-REI.C Solve systems of equations.

Massachusetts Curriculum
Framework for Mathematics

AI.A-REI.C. 5

Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.

Aligned Components of Eureka Math ${ }^{2}$

Massachusetts Curriculum Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.A-REI.C. 6
Solve systems of linear equations exactly
and approximately (e.g., with graphs),
focusing on pairs of linear equations
in two variables.
AI.A-REI.C. 7
Solve a simple system consisting of a
linear equation and a quadratic equation
in two variables algebraically and
graphically.

A1 M2 Lesson 7: Low-Flow Showerhead
A1 M2 Lesson 8: Systems of Linear Equations in Two Variables
A1 M2 Lesson 9: A New Way to Solve Systems
A1 M2 Lesson 10: The Elimination Method
A1 M2 Lesson 11: Applications of Systems of Equations
A1 M4 Lesson 24: Another Look at Systems of Equations

Reasoning with Equations and Inequalities

AI.A-REI.D Represent and solve equations and inequalities graphically.

Massachusetts Curriculum Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.A-REI.D. 10

Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). Show that any point on the graph of an equation in two variables is a solution to the equation.

A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M2 Lesson 2: Graphing Linear Equations in Two Variables

Massachusetts Curriculum Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.A-REI.D. 11

Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions and make tables of values. Include cases where $f(x)$ and/or $g(x)$ are linear and exponential functions.

AI.A-REI.D. 12

Graph the solutions of a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set of a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

A1 M3 Lesson 10: Using Graphs to Solve Equations
A1 M3 Lesson 15: The Absolute Value Function
A1 M4 Lesson 24: Another Look at Systems of Equations
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
A1 M5 Lesson 20: Comparing Growth of Functions

A1 M2 Lesson 4: Solution Sets of Linear Inequalities in Two Variables
A1 M2 Lesson 5: Graphing Linear Inequalities in Two Variables
A1 M2 Lesson 12: Solution Sets of Systems of Linear Inequalities
A1 M2 Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities
A1 M2 Lesson 14: Applications of Systems of Linear Inequalities
A1 M6 Lesson 5: Solar System Models

Interpreting Functions

AI.F-IF.A Understand the concept of a function and use function notation.

Massachusetts Curriculum
Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.F-IF.A. 1

Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output (range) of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.

AI.F-IF.A. 2

Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

A1 M3 Topic A: Functions and Their Graphs

[^0]
Massachusetts Curriculum Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.F-IF.A. 3

Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.

A1 M5 Lesson 1: Exploring Patterns
A1 M5 Lesson 2: The Recursive Challenge
A1 M5 Lesson 3: Recursive Formulas for Sequences
A1 M5 Lesson 4: Explicit Formulas for Sequences
A1 M5 Lesson 5: Arithmetic and Geometric Sequences
A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences

Interpreting Functions

AI.F-IF.B Interpret linear, quadratic, and exponential functions with integer exponents that arise in applications

 in terms of the context.
Massachusetts Curriculum
 Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.F-IF.B. 4

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; and end behavior.

A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph
A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph
A1 M3 Lesson 9: Representing Functions from Verbal Descriptions
A1 M3 Lesson 11: Comparing Functions
A1 M3 Lesson 12: Mars Curiosity Rover
A1 M3 Lesson 13: Modeling Elevation as a Function of Time
A1 M4 Lesson 1: Falling Objects
A1 M4 Lesson 2: Projectile Motion
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form

Massachusetts Curriculum Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.F-IF.B. 4 continued

AI.F-IF.B. 5

Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.

A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area

A1 M3 Lesson 3: The Graph of a Function
A1 M3 Lesson 13: Modeling Elevation as a Function of Time
A1 M3 Lesson 16: Step Functions
A1 M4 Lesson 2: Projectile Motion
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

A1 M4 Lesson 1: Falling Objects
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M5 Lesson 19: Analyzing Exponential Growth
A1 M5 Lesson 20: Comparing Growth of Functions
A1 M5 Lesson 24: Modeling an Invasive Species Population

Interpreting Functions

AI.F-IF.C Analyze functions using different representations.

Massachusetts Curriculum Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.F-IF.C. 7

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

AI.F-IF.C.7.a

Graph linear and quadratic functions and show intercepts, maxima, and minima.

A1 M3 Lesson 4: The Graph of the Equation $y=f(x)$
A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
A1 M3 Lesson 6: Representations of Functions
A1 M4 Lesson 4: Graphs of Quadratic Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

A1 M3 Topic C: Piecewise-Defined Linear Functions
A1 M3 Lesson 19: Building New Functions-Translations
A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function

A1 M5 Lesson 11: Graphing Exponential Functions
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)

Massachusetts Curriculum Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.F-IF.C. 8

Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.

AI.F-IF.C.8.a

Use the process of factoring and completing the square in a quadratic function to show zeros, maximum/ minimum values, and symmetry of the graph, and interpret these in terms of a context.

AI.F-IF.C.8.b

Use the properties of exponents to interpret expressions for exponential functions. Apply to financial situations such as identifying appreciation and depreciation rate for the value of a house or car some time after its initial purchase: $V_{n}=P(1+r)^{n}$.

AI.F-IF.C. 9

Translate among different representations of functions (algebraically, graphically, numerically in tables, or by verbal descriptions). Compare properties of two functions each represented in a different way.

This standard is fully addressed by the lessons assigned to its subsections.

A1 M4 Lesson 10: Zeros of Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions

A1 M5 Lesson 11: Graphing Exponential Functions

A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 18: Modeling Populations

A1 M3 Lesson 11: Comparing Functions
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions

Building Functions

AI.F-BF.A Build a function that models a relationship between two quantities.

Massachusetts Curriculum
Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.F-BF.A. 1	A1 M6 Lesson 5: Solar System Models
Write linear, quadratic, and exponential functions that describe a relationship between two quantities.	
AI.F-BF.A.1.a Determine an explicit expression, a recursive process, or steps for calculation from a context.	A1 M3 Lesson 17: Piecewise Linear Functions in Context A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts A1 M4 Lesson 25: Maximizing Area A1 M4 Lesson 26: Modeling Data with Quadratic Functions A1 M4 Lesson 27: Search and Rescue Helicopter A1 M5 Topic A: Arithmetic and Geometric Sequences A1 M5 Lesson 8: Exponential Functions A1 M5 Lesson 15: Calculating Interest A1 M6 Topic B: Developing Models for Contexts
AI.F-BF.A.1.b Combine standard function types using arithmetic operations.	A1 M6 Lesson 4: The Deal A1 M6 Lesson 6: Designing a Fundraiser A1 M6 Lesson 7: World Record Doughnut
AI.F-BF.A. 2 Write arithmetic and geometric sequences both recursively and with an explicit formula them to model situations, and translate between the two forms.	A1 M5 Lesson 5: Arithmetic and Geometric Sequences A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences A1 M5 Lesson 7: Sierpinski Triangle

Building Functions

AI.F-BF.B Build new functions from existing functions.

Massachusetts Curriculum
 Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.F-BF.B. 3

Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Include linear, quadratic, exponential, and absolute value functions. Utilize technology to experiment with cases and illustrate an explanation of the effects on the graph.

AI.F-BF.B. 4

Find inverse functions algebraically and graphically.

AI.F-BF.B.4.a

Solve an equation of the form $f(x)=c$ for a linear function f that has an inverse and write an expression for the inverse.

A1 M3 Topic D: Transformations of Functions
A1 M4 Lesson 20: Art with Transformations
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

Supplemental material is necessary to address this standard.

Supplemental material is necessary to address this standard.

Linear, Quadratic, and Exponential Models

AI.F-LE.A Construct and compare linear, quadratic, and exponential models and solve problems.

Massachusetts Curriculum

 Framework for Mathematics
Aligned Components of Eureka Math ${ }^{2}$

AI.F-LE.A. 1

Distinguish between situations that can be modeled with linear functions and with exponential functions.

AI.F-LE.A.1.a

Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.

AI.F-LE.A.1.b

Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

AI.F-LE.A.1.c

Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

A1 M6 Topic A: Modeling Bivariate Quantitative Data

A1 M5 Lesson 19: Analyzing Exponential Growth

A1 M5 Lesson 15: Calculating Interest
A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 21: World Population Prediction
A1 M5 Lesson 22: A Closer Look at Populations
A1 M5 Lesson 24: Modeling an Invasive Species Population

A1 M5 Lesson 15: Calculating Interest
A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 21: World Population Prediction
A1 M5 Lesson 22: A Closer Look at Populations
A1 M5 Lesson 24: Modeling an Invasive Species Population

Massachusetts Curriculum Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.F-LE.A.2	A1 M5 Lesson 8: Exponential Functions
Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (including reading these from a table).	A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
A1 M5 Lesson 16: Exponential Growth	
AI.F-LE.A. 3	A1 M5 Topic D: Comparing Linear and Exponential Models
Observe, using graphs and tables, that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.	A1 M5 Lesson 20: Comparing Growth of Functions

AI.F-LE.A. 2

Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, cription of a relationship, or two input-output pairs (including reading these from a table).

AI.F-LE.A. 3

Observe, using graphs and tables, that a quantity increasing exponentially eventually exceeds a quantity increasing as a polynomial function.

A1 M5 Lesson 8: Exponential Functions
A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
A1 M5 Lesson 16: Exponential Growth
A1 M5 Lesson 17: Exponential Decay
A1 M5 Topic D: Comparing Linear and Exponential Models
A1 M6 Topic B: Developing Models for Contexts

A1 M5 Lesson 20: Comparing Growth of Functions

Linear, Quadratic, and Exponential Models

AI.F-LE.B Interpret expressions for functions in terms of the situation they model.

Massachusetts Curriculum Framework for Mathematics

Aligned Components of Eureka Math²

AI.F-LE.B. 5

Interpret the parameters in a linear or exponential function (of the form $\left.f(x)=b^{x}+k\right)$ in terms of a context.

[^1]
Interpreting Categorical and Quantitative Data

AI.S-ID.A Summarize, represent, and interpret data on a single count or measurement variable. Use calculators, spreadsheets, and other technology as appropriate.

Massachusetts Curriculum
Framework for Mathematics
Aligned Components of Eureka Math ${ }^{2}$

AI.S-ID.A. 1

Represent data with plots on the real number line (dot plots, histograms, and box plots).

AI.S-ID.A. 2

Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.

AI.S-ID.A. 3

Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).

A1 M1 Lesson 18: Distributions and Their Shapes
A1 M1 Lesson 19: Describing the Center of a Distribution
A1 M1 Lesson 20: Using Center to Compare Data Distributions

A1 M1 Topic D: Univariate Data

Interpreting Categorical and Quantitative Data

AI.S-ID.B Summarize, represent, and interpret data on two categorical and quantitative variables.

Massachusetts Curriculum Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.S-ID.B. 5

Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.

AI.S-ID.B. 6

Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.

AI.S-ID.B.6.a

Fit a linear function to the data and use the fitted function to solve problems in the context of the data. Use functions fitted to data or choose a function suggested by the context (emphasize linear and exponential models).

AI.S-ID.B.6.b

Informally assess the fit of a function by plotting and analyzing residuals.

A1 M2 Lesson 22: Summarizing Bivariate Categorical Data with Two-Way Tables
A1 M2 Lesson 23: Bivariate Categorical Data and Conditional Relative Frequency Tables
A1 M2 Lesson 24: Conditional Relative Frequencies and Association

A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data

A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data
A1 M2 Lesson 17: Modeling Relationships with a Line
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 26: Modeling Data with Quadratic Functions
A1 M4 Lesson 27: Search and Rescue Helicopter
A1 M6 Topic A: Modeling Bivariate Quantitative Data

A1 M2 Lesson 18: Calculating and Analyzing Residuals
A1 M2 Lesson 19: Analyzing Residuals
A1 M6 Topic A: Modeling Bivariate Quantitative Data

Massachusetts Curriculum Framework for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.S-ID.B.6.c

Fit a linear function for a scatter plot that suggests a linear association.
A1 M2 Lesson 17: Modeling Relationships with a Line
A1 M2 Lesson 18: Calculating and Analyzing Residuals
A1 M2 Lesson 20: Interpreting Correlation
A1 M6 Topic A: Modeling Bivariate Quantitative Data

Interpreting Categorical and Quantitative Data

AI.S-ID.C Interpret linear models.

Massachusetts Curriculum
Framework for Mathematics

AI.S-ID.C. 7

Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.

AI.S-ID.C. 8

Compute (using technology) and interpret the correlation coefficient of a linear fit.

AI.S-ID.C. 9

Distinguish between correlation and causation.

Aligned Components of Eureka Math ${ }^{2}$

A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data

A1 M2 Lesson 20: Interpreting Correlation
A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data

A1 M2 Lesson 20: Interpreting Correlation
A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data

[^0]: A1 M3 Lesson 1: The Definition of a Function
 A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
 A1 M3 Lesson 6: Representations of Functions
 A1 M3 Lesson 16: Step Functions
 A1 M5 Lesson 1: Exploring Patterns
 A1 M5 Lesson 2: The Recursive Challenge
 A1 M5 Lesson 3: Recursive Formulas for Sequences
 A1 M5 Lesson 4: Explicit Formulas for Sequences
 A1 M5 Lesson 7: Sierpinski Triangle

[^1]: A1 M5 Lesson 18: Modeling Populations
 A1 M5 Lesson 19: Analyzing Exponential Growth
 A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
 A1 M5 Lesson 24: Modeling an Invasive Species Population

